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ABSTRACT

The instability of a viscous fluid inside a rectangular tank oscillating about an axis

parallel to the largest face of the tank is investigated in the linear regime. The flow is shown

to be unstable to both longitudinal roll and standing wave instabilities. The particular

cases of low and high oscillation frequencies are discussed in detail and the results obtained

for the standing wave instability at low frequencies shed light on the corresponding steady

flow instability problem. The relationship between the roll instability and convective or

centrifugal instabilities in unsteady boundary layers is discussed. The eigenvalue problems

associated with the roll and standing wave instabilities are solved using Floquet theory and

a combination of numerical and asymptotic methods. The results obtained are compared

to the recent experimental investigation of Bolton and Maurer(1992) which indeed provided

the stimulus for the present investigation.
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1 Introduction

Our concern is with the instability of the unsteady flow of a viscous fluid inside a

rectangular tank oscillating about an axis parallel to one face of the tank. The orientation

of the axis of oscillation is shown in Figure (1.1). An experimental investigation of the

different regimes for the flow inside the tank is described in Bolton and Maurer (1992),

herafter referred to as BM. If the geometry of the tank shown in Figure (1.1) is such

that
Lx Lz

--d >> 1, --_- >> 1

then the basic flow is unidirectional (in the x* direction) and dependent only on y*

and time. In fact the flow is an exact solution of the Navier Stokes equations. The

stability of the flow is therefore governed by a system of partial differential equations

with coefficients periodic in time. We shall show that the linear instability problem is

closely related to those for centrifugal and convective instabilities in time-periodic flows.

Before discussing the results of BM we shall first briefly review the relevant details of

the related flows mentioned above.

The experimental and theoretical investigations of the centrifugal instability of a

Stokes layer by Seminara and Hall (1976) showed that time-periodic flows can sustain

instabilities not accessible to quasi-steady instability theories based on the instantaneous

velocity profiles. Seminara and Hall (1976) found that a torsionally oscillating cylinder

in a viscous fluid drives an unsteady boundary layer which is unstable to Taylor vortex

like instabilities at high enough frequencies of oscillation. A more detailed experimental

investigation of the problem by Park, Barenghi and Donnelly (1980) confirmed the see-

ondary subharmonic destabilization of the most dangerous mode found by Seminara and

Hall (1976). An approximate description of this subharmonic breakdown was later given

by Hall (1981). Subsequently it was shown by Hall (1984) and Papageorgiu (1987) that

the instability mechanism found by Seminara and Hall can occur in spatially localized

positions in more complicated unsteady boundary layer flows.

The convection mode of instability of the unsteady thermal boundary layer in a semi-

infinite mass of fluid adjacent to a time-periodically heated rigid wall was investigated

theoretically by Hall (1985). In the latter paper it was shown that the convection

problem for a fluid with Prandtl number equal to unity is identical to that governing

the centrifugal instability problem for the flow adjacent to a rapidly rotating cylinder

in a uniform stream. As yet only the severely truncated equations discussed by Hall

have been solved and the results found suggest that the most dangerous mode is a



subharmonicone. If that is tile only unstablemode then Hall's analysissuggests that

the flow on a rapidly rotating cylinder is stable since in that problem the polar angle

0 plays the role of time and solutions periodic in 0 with period 4_ are of no physical

relevance,

Another convection problem associated with time-periodic forcing is that discussed

by Gresho and Sani (1970). The latter authors investigated the instability of a layer of

fluid heated steadily from below in a time-periodic gravity field. It was found that the

stability problem is governed by Mathieu's equation and that tile dominant instability is

subharmonic one. The problem discussed by Gresho and Sani is of considerable practical

importance because of the presence of convection in a micro-gravity enviroment where

vibrations cause the effective gravitational field to be oscillatory in time.

The possible instability of time-periodic flows to travelling wave disturbances has

by contrast not received much attention. The fundamental problem here concerns the

linear instability of a Stokes layer on a transversely oscillating rigid plane wall to waves

propagating in tile flow direction. This problem was first investigated by Kerczek and

Davis (1974) who found that, even though the instantaneous profiles can be highly in-

flectional and therefore massively unstable, tile oscillatory flow between parallel plates

is stable according to a Floquet approach. Later Hall (1978) showed that, even though

the Floquet solutions of Kerczek and Davis were greatly dependent on the presence

of a stationary wall, the Stokes layer on a wall oscillating in a viscous fluid is stable.

However the instantaneous velocity profiles associated with a Stokes layer can be mas-

sively unstable on tile basis of a quasi-steady analysis. Such an approach is valid at

large Reynolds numbers, however the unstable solutions cannot be continued over a full

period of oscillation to produce Floquet solutions. More recent work by Akhavan et al

(1991a,b), based on full numerical simulations of the Navier-Stokes equations, suggests

that transition to turbulence in Stokes layers can be attributed to higher order instabil-

ities associated with the primary instabilities of the instantaneously inviscidly unstable

velocity profile of the basic state.

We shall now discuss the main results found by BM in their experimental investiga-

tion of the flow in a flapping rectangular tank. A more detailed discussion of the results

can be found in §4 of this paper.

In order to characterize the frequency of the flow BM introduced the parameter

- _°_2 where w is the frequency of oscillation, u the kinematic viscosity and d as
/J

shown in Figure (1.1). At a fixed value of the flapping angle a BM observed that for



small enoughvaluesof ¢ the flow was stable. When ¢ was increased a bifurcation to a

weak roll state took place at a critical value of ¢. If this critical value of _5 is denoted

by ¢cl then BM showed that ¢cl is a monotonically decreasing function of a. At a

second critical value of a, _c2, a strong roll state was found by BM and at sufficiently

small values of a this mode exhibited hysteresis. At higher values of ¢ wavy modes were

observed experimentally though BM suggest these were associated with end effects. At

very high values of ¢ a turbulent flow superimposed on some residual role structure was

observed in the experiments. The analysis in this paper will focus on the origin of the

strong vortex state found experimentally, however our results will also suggest a likely

candidate for a mode responsible for the onset of the wavy states.

In the following section we shall formulate the linear instability problem for the

unidirectional flow in an infinitely long flapping tank. The equations we derive govern the

linear instability of the flow to disturbance periodic in the x* and z* directions. In Section

3 these equations are discussed for roll modes which are taken to be independent of x*.

The particular cases of large and small ¢ are discussed in §3 whilst in §4 numerical results

for _5 of 0(1) size are presented and our results compared to experimental observations.

In Section 5 we discuss travelling wave disturbances which are independent of z*. Finally

in §5 we draw some conclusions.

2 Basic flow and the stability problem

Consider the flow of a viscous fluid in the rectangular container defined by

d d

-L_<x*<L,, -_-<y*<_, -Lz <z*<Lz (2.1)

with respect to a Cartesian coordinate system (x*,y*,z*). The fluid is taken to be

incompressible and the density and viscosity are denoted by p and v respectively. The

fluid is set in motion by the oscillation of the container about the z* axis with angular

velocity (0, 0, c_cosin wt"). Following BM we define the frequency parameter q_ by

wd 2
¢ - (2.2)

P

so that • >> 1 corresponds to a situation where viscous effects are small whilst • << 1

corresponds to a viscous dominated flow. We can suppose that the velocity and pressure

of the fluid are scaled on olwd and o_pw2d _ respectively whilst dimensionless variables

(x, y, z) and t are defined by

(z,y,z)=a-'(x*,y*,z*), t= ot*, (2.3)



where t* denotes time. With respect to the coordinate system moving with tile tank the

Navier Stokes equations take tile form

divu = 0,

1

ut + a(u. V)u - _Au = -Vp + 2c_ sin t

which must be solved subject to

u = 0, on

If we write

p __

(v) ix)-u +asin2t y +cost -x . (2.4)

0 0 0

1

x = :l=Lxd -1, y= :l=-_, z = ±Lzd -1. (2.5)

sin2 t(x2 ÷ y2)_ xycost + [_
2

then (2.4) becomes

1

_t + a(u. V)u - _Au = -Vi5+ 2a sint

and for convenience we now drop the A notation.

v)/2ycos)-u + 0 ,

0 0

(2.6)

In order to make analytical progress we assume that L_/d, Lz/d are large so that we

can drop tile boundary conditions at x = -t-Lxd -1, z = -l-Lzd -_. As in BM this enables

us to look for a unidirectional flow of the form

Yu = (_(y, t), 0, 0), v = w = O, p = -2c_sint udy,

where

The required solution is

-1

uyy + fit = 2y cos t,

1
_=0, y=+-.

2
(2.7)

ft = {-yi + Q}e ;t + COMPLEX CONJUGATE, (2.8)

where

Q

isinh [(i_5) ½y]

• I 1 "

2 sinh [(_)7 7]
(2.9)



For large valuesof (I)the function Q is exponentially small away from layers of depth

1
0((P)-½ near y = :i:½. Thus for large (I, we find that near y =

fi=sint-sin t+ (y-) e+v_7(Y-_ ). (2.10)

For small values of (} the fluid responds in a quasi-steady manner to the forcing and we

obtain

The flow in a tank rotating with constant angular velocity is then obtained fi'om tlle

above by setting t equal to zero.

We now perturb the basic flow given by (2.8) by writing

u = (_,0,0) + [U(y,t)expi{Ax + kz} + COMPLEX CONJUGATE] + .... (2.12)

If we assume that IuI << [gl then we can linearize the equations (2.6) to give

iAu + vy+ = o,
£U + o_V_y = -iAP + 2o_V sin t,

£V = -Py - 2ctUsint,

£W = -ikP.

(2.13)

Here the operator £: is defined by

The equations (2.13) nmst be solved subject to

1
U=V=W=O, y=+-.

2

(2.14)

(2.15)

Since g is a periodic function of time we anticipate that solutions of (2.13), (2.15) may

be found with

(U, V, W, P) = eut(0, I_, l)d, P) (2.16)

where U,I/,I)V and /5 are periodic with respect to t and the Floquet exponent p is

complex and is a function of (I), o_, A, k. The stability of the flow is then determined

by tile sign of #_; if solutions of the form (2.16) exist with #_ > 0 then the flow is

unstable. In the next section we discuss solutions of the eigenvalue problem for the case

)_ = 0 which, following BM , we refer to as "roll" modes. In section 5 we investigate the

possibility of Tollmien-Schlichting wave instabilities.



3 Roll modes of instability

We shall now seek solutions of (2.13), (2.15) with A = 0, it is then convenient to eliminate

W and P to give the following coupled pair of equations for U and V:

-- -it

(O:u - k _- ¢0,)(0_ - k2)V = -2_(I)k 2 sin t, (3.1)

1

u=v=vy=o,

It is of interest to note that (3.1) also governs the stability of a vertically oscillating

Boussinesq fluid between parallel walls y = +½. In that case the fluid has Prandtl

number unity and the upper and lower walls have temperature proportional to :t: sin t

respectively whilst the fluid is subject to a gravitational field proportional to sin t. In

that case the Rayleigh number for the flow is a:(I )2 so that at 0(1) values of (I) we should

anticipate unstable solutions of (3.1) for a = 0(1). Before discussing the numerical

solution of (3.1) for 0(1) values of a and (I) it is instructive for us to first consider the

further limits (I) --_ 0 and (I) --_ oc.

Low frequency limit

In the low frequency limit (3.1) reduces to

(02u-k2-_'Ot)U=-2_¢P{sint-t-Ocost[22 14] (I)2 sin t. 4 y2 7 "_
-1-2 (Y-y+2-_-6)...) V,

(3.2a)

(0_ - k s- ¢Ot)(O_- k2)V = -2a_bk2U sin t, (3.2b)

1

U=V=V_=0, Y=+2 (3.2c)

We now indicate how a WKB type of solution of the above equations can be found. If

we set a = 0 then the equations for U and V decouple and it is easy to see that the flow

is stable with decay rates of size (I)-1 on the t timescale. We anticipate that this decay

will then be balanced by growth associated with the apparently destabilizing terms on

the right hand side of (3.2a,b). This is achieved if a(I) ,-_ 0(1) so that we write



and let (U, V) = (Uo(y), Vo(y)) exp{¢ -1 ft (7dt} + .... The eigenvalue problem for the

local growth rate (7 is then found to be given by

[d2_,- k 2 - a]Uo - 2A sin tVo,

[dS_ ks _ (7lids- kS]Vo= -2AkssintUo,
1

Uo=Vo=v% y =

(3.3)

Thus t appears only as a parameter in the zeroth order problem so we have an ordinary

differential system to determine the eigenvalues o = (7(T, K, A). In fact by replacing

V0 sin t by V0 we see that (3.3) is then equivalent to the Benard problem for a fluid of

1Prandtl number unity between the plate y = _ at temperature unity and the plate

1
Y = 7 at zero temperature. However the effective Rayleigh number is -4A 2 sin 2 t so that

the flow is stable and (7 must have negative real part. This can be seen from (3.3) for

large values of A by writing

(7 = aoA+...,

Uo = Uoo+..., (3.4)

Vo = Voo+ ....

The eigenvalue problem for (70 then becomes

2 S
%[dv - k2]Vo = 4k s sin 2 tV0

1

V0=0, y = -4-_.

(3.5)

We notice here that the limit A _ oc is an inviscid one so that the eigenvalue problem

is now associated with a second order differential equation. In fact the eigenvalues of

(3.5) are
:l:2ki sin t

n = 1,2,3,... (3.6)
ao - x/n_r 2 + kS,

which means that the flow is inviscidly stable. Thus we have shown above that for q) >> 1

a(I) >> 1 the disturbance has an imaginary growth rate of size 0(a).

The above discussion shows that no neutral disturbances exist for a(I) = 0(1), (I) << 1.

In order to obtain neutral disturbances we must increase a until sufficient exponential

growth takes place near the times when sin t = 0 to balance the exponential decay

associated with viscous effects at other times. The exponential growth takes place in

0((I)) time intervals near the times when sin t = 0; this means that a disturbance grows

by an amount of order e"(r2c for some constant C. Viscous effects on the other hand



leadto decayby factors by sizee($) }D for some D. Thus the decay rate decreases with

k if a and _ are held fixed. However when k increases to 0(I')-_ viscous effects in the

bulk of tile flow also come into play and a minimum rate is achieved. We therefore seek

a solution of (3.2) for the small q5 case with

11

B = a¢-r, (3.7a)

1

k = I(_-_ (3.7b)

held fixed.

We then expand U and V in the form

(u,v)=
n=O n=O

with U1 = I/1 = al = 0.

The leading order systems to determine 0.1,02 are then found to be

aoUo = 2sintVoB

0"oVo = - 2 sin tUoB

a0U2 = 2sintV2B- o'2U0

0.0 Voyy
0.oV2 = -2 sintU2 B - cr2Vo + --

K 2

The consistency of (3.9) requires

ao2 = -4 sin 2 tB 2

so that _ro is purely imaginary and then (3.10) is consistent of

K_0.2
Voy_ Vo 0

0"0

and the solution of this equation which vanishes at +½ = y is

1,_ = sin n_r(9 + _ ),

with C(t) to be determined and
=

0"2/0"0 _--

--7-/27r 2

K2 -., n = 1,2,3, ....

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

8



Thus or2is alsopurely imaginary andindeed0.3,a4, O'5 are also imaginary. The equations

to determine 0.6 are found to be

0.0U6 - 2B sintV_

0.oV6 + 2B sintU6

: [0.2< -Jr- 0.3U3 -t- 0.4U2 -Jf- 0.5U1 -1-(06 "}- [_2)g0]

+ 2B[ql costV3 + q2 sintV2]

= -[0"_¼+ 0._v_+ 0.4v_+ 0"_v,+ (0.6+ K_)Vo]

+ K-210.0V4 + 0.2V2 + 0"3V1 + 0.4Vo]yy, (3.14)

where

Y21 ( Y27 )ql -- 2 24' q2 : -- 9 4 -- --2 + _ /12 (3.15)

If we eliminate U0, V0 from (3.14) we obtain a differential equation for V4. An examina-

tion of the disturbance structure in the viscous wall layers shows that the equation for

V4 must be solved subject to

V4 n rr__._ 1-- , Y:_,
o"0

__ --nrr 1

v4 - --{7° , y=-_.

(3.16)

If the equation for V4 is to have a solution satisfying these conditions then the real part

of 0.6 is given by

-2n27r2B½1 sintl} - K 2. (3.17)
0.6r : i_. 2

The amplitude function C(t) is determined at higher order and is found to be singular at

the instants when ao vanishes. In order to find the disturbance structure at such times

we consider a small time interval near for example t = 0 and define

T = O-'t. (3.18)

This scaling is implied by (3.23) which shows that the first and second terms in the

brackets on the right hand side of this equation are comparable whenever sint _ 0(q)).

We then note that (3.2) may then be written in the form

(0_ ¢j} OT)U-- --_ T + + -_ + +... V, (3.19a)

(o_ )(o: ,,.2) _2BK2
K2 OT V- {T + .}U. (3.195)

These equations may be solved using a WKB approach to take care of the time depen-

dence and by noting that for small values of (y - ½) we can ignore the third and fourth



i

terms in the bracket on the right hand side of (3.19a). In order to balance the time

derivative with terms on the right hand side of (3.19) we must take Or = 0(_@) and

the y dependence of the disturbance then shrinks to a thin layer of thickness (I)_ near

Y=7"_ In fact a similar layer exists near y = -51 but the structure is similar to that at

the upper wall. We define ( = (y - ½)(I)@ and then look for a solution of (3.19) near

1 of the formy=7

(u,v) = (3.20)

If we substitute the above expansions into (3.19) and equate terms of the powers in (I)_

we obtain at zeroth order a pair of linear equations for U0, V0. The consistency of these

equations yields

so that we have an exponentially growing solution in

1
---<T<0.

12

We assume that T is in this range and consider the root of (3.21) with J0 > 0. At next

order we find that the linear equation for/[/1, V1 obtained are consistent if

12K2{
g2Vo 2J1 g2Vo + Vo (3.22)
d_ 2 Jo 12T + 1

This equation is then solved sub'ject to Vo = 0, { = 0 and such that Vo -,0, _ ---_ -co.

This enables us to express V0 in terms of solutions of Airy's equation and the quantity

J1 can then be expressed in terms of the zero's of Ai. The solution (3.22) fails when

T = 0, T - 1 and WKB turning point layers (with respect to t) are needed to
12

connect (3.8) and (3.22). Across these layers the two oscillating solutions (3.8) with

o0 -- +2isintB connect with the exponentially decaying and growing solutions (3.20)

1 1 i .....
with J0 = + A periodic solution is obtained by choosing B such thai

the exponential growth in -_ < T < 0 is identical to the exponential decay associated

with ¢6 in (3.8). We note here that the particular form of the time dependence of (3.9)

enables us to consider only the interval 0 < t < rr. If we then consider the least decaying

solution (3.17) with n = 1 we find that the smallest value of B which leads to a neutral

solution of (3.9) for (I) << 1 satisfies

2rr B_-

K 2
,, . l /o_± 1 ½dT-- ts,ntl:dt + I(27r = 2B [-r(r + -i--_)] .

12

(3.23)

10



The aboveequation can then besolvedfor B-_ (implicitly assumed to be positive in the

derivation of (3.23)) as a function of K. Figure (3.1) shows B as a function of K, we

see that B ,-_ K, -2 B ,-_ K, -4 for small and large K respectively and that B attains a

minimum at some intermediate value of K.

If the integral on the left hand side of (3.23) is integrated numerically we find that the

minimum occurs when

B = 73630. (3.24a)

K = 7.99. (3.24b)

Thus the most dangerous mode for ¢' << 1 has c_ given by

73630
a_ ,, +... (3.25)

OT

We postpone further discussion of (3.25) until the next section where we discuss the

numerical solution of the eigenvalue problem for • = 0(1).

The high frequency limit

For large values of the frequency parameter (I) the function Q(y) appearing in the stability

equations (3.1) develops boundary layers of thickness (I)--_ at y -- +½ and is exponentially

small elsewhere. It follows that any instability must be localized in these layers so for

1 and definedefiniteness we focus on the layer at y = -i

, I (3.26)

The dominant terms on the right and left hand sides of (3.1) then balance for q = 0(1)

if
1

U _ _V(I)_, V ,,- _U

with k --_ 0((I)½). Hence we must take cY and write

B
-- 1 "Jr- "'"

^ 1

k = k¢_+...

11



7

=

and the zeroth order approximation to (3.1) in the lower wall layer can be written in

the form

( (i-ll i½_+it }(0_ - k S - O,)U = V _e + COMPLEX CONJUGATE

(0_ _2 Ot)(O__]c2)V=_2B]c2sintU. (3.27)

U=V=V,j=O, r/=O, U,V_O, r/_.

Solutions of this system of the form

(u, v) =

can be found and the Floquet exponent # is then a function of B and k. Neutral solutions

then correspond to #r = 0 and the corresponding values of k, B are the neutral values

of the neutral wavenumber and angular displacement. In fact (3.27) is quite similar to

the eigenvalue problem solved by Seminara and Hall (1976). The latter authors were

concerned with the stability of the flow around a torsionally oscillating cylinder. The

eigenvalue value problem # = #(k, B) associated with (3.26) is identical to that governing

the stability Of a vertically oscillating Boussinesq fluid of Prandtl number unity subject

to a time periodic temperature heating at the wall. If the vertical oscillations are replaced

by a steady gravitational field then we obtain the eigenvalue problem discussed by Hall

(1985). It is of interest to note that in _hat case the growing modes correspond to

subharmonic disturbances.

A numerical investigation of the eigenvalue problem (3.27) showed that the only

growing disturbances have #i = 0 so that the disturbed flow is Synchronous with the

basic flow. Our calculations showed that the minimum value of B is given by B = 2.9

so that at high frequencies the boundary between stability and instability is given by

2.9

o_- ¢} + ... (3.28)

We postpone a comparison of the low and high frequency predictions found above to the

numerical solutions of (3.1) until the next section.

12



4 Numerical solutions of the eigenvalue problem

for = 0(1)

On the basis of Floquet theory we anticipate that solutions of (3.1) may be found in the

form
CO

(v,v) = F_,  int (4.1)
--OO

and the sign of #r, the Floquet exponent, then determines the stability characteristics of

the flow in question. We obtained values of # by substituting for (U, V) from (4.1) into

(3.1) and solving the infinite set of coupled ordinary differential equations obtained by

equating like powers of e 't by a shooting procedure. Because of the symmetries of the

basic state it is possible to show that the possible eigenfunctions (U,_(y), V,_(y)) are either

odd 0r even functions of y. This result was used to reduce the interval over which these

functions must be calculated to [0, ½]. However note that all the results we obtained

correspond to even modes in y and the corresponding Floquet exponent was found to

be purely real. The latter result means that the disturbances are synchronous with the

basic state; we note here that the experimental investigation of BM found no evidence of

subharmonic instabilities. Finally before presenting our results we note that the number

of Fourier terms used in the truncated form of (4.1) and the number of grid points in

the Runge-Kutta integration scheme were varied until convergence was achieved.

In Figure (4.1) we show a sequence of neutral curves in the k - 4) plane for several

values _. We see that there is a minimum value of (I) on each neutral curve, above these

curves exponentially growing modes exist. If o_ is varied we can compute the o_- (I) locus

of the most dangerous mode. This curve is shown in Figure (4.2) and is labeled as T1.

In this Figure we also show some of the experimental results of BM.

The labeled I, II, III, IV and V were given by BM and represent rough boundaries

between different flow states. Below I no roll state could be observed, whilst above this

curve weak rolls could be seen though their amplitude did not increase significantly until

II was reached. Regimes associated with weak rolls WK are denoted by circles in Figure

(4.2). In fact we note that the small circles denote states where any horizontal structure

was barely visible whilst the intermediate circles denote moderate amplitude weak-rolls

with defects. The large circles denote defect-free weak rolls of moderate amplitude. It

appears that the theoretical curve T1 predicts the onset of the strong roll cells associated

with II. Despite an exhaustive search we could find any amplifying modes corresponding

to the weak roll onset observed experimentally. We note here that no particular time

13



7

dependence of the perturbation was imposed in our calculations so that if subharmonic

or superharmonic modes were unstable they would have been captured by the numerical

scheme. We conclude then that the curve I of BM is to be associated with end effects

in the experiment, certainly the fact that BM state that the roll amplitude does not

increase significantly until II is crossed would tend to support this conclusion.

The diamonds (0) in Figure (4.2) denote the position where the onset of strong

rolls was observed by BM after a slight increase in O. For a .%.<90 ° BM found that

hysteresis took place and that the strong rolls did not disappear until a lower value

of O was achieved. These points are denoted by T in Figure (4.2). The symbol II

was used by BM to denote regions where front propagation was observed, here strong

rolls consumed weak-rolls as a travelling wave front as • was slowly increased. The

symbols [3, S' were used by BM to denote straight, defect free rolls and straight rolls

with defects respectively. In some cases BM observed wavy strong rolls, these occurred

in the same a - qb region as the straight rolls and these states are denoted for different

sidewall conditions by A, WV. At a fixed value of a the strong rolls exhibited multiple

superimposed wavy modes (MWV) which became more disorganized as • increased.

Above curve IV strong-rolls with superimposed turbulence were observed by BM.

In Figure (4.3) we compare the critical wavenumbers of our theoretical predictions

with the observations of BM. We see again that the onset of the strong roll state again

correlates well with the theoretical work.

Finally we note that the most dangerous modes predicted by the asymptotic theories

for • <( 1, • >> 1 are denoted by the curves AI and A2 respectively in Figure (4.2). We

see that the high frequency prediction agrees well with the finite qb calculation whilst the

small qb prediction is not particularly accurate at the largest value of a used. However

since the latter theory is based on a >> 1 and we have computed only for a _ 3 we

presume that the difference is because the asymptotic regime has not yet been achieved.

Indeed when a -_ 3 the curve T1 has _ .-. 50 which means that the unsteady boundary

layer has a thickness of about _, thus the quasi-steady response of the basic state is not

operational.

In Figures (4.4a,b,c) we show that the first few Fourier modes of U, V for the most

dangerous mode at a = 1.1, 1.5, and 5. Note that these functions are even about y = 0

and that u,,, v_-i are zero when n is an even integer.

In order to see whether the wavy and turbulent states observed by BM are related to

travelling wave disturbances we shall in the next section discuss the possible existence

14



of Tolhnien-Schlichting instabilities.

5 Tollmien-Schlichting wave disturbances

Here we investigate the possibility that travelling wave disturbances are responsible

for the onset of instability in the flow in a flapping rectangular tank. We restrict our

attention to two-dimensional waves and therefore set 0z = W = 0 in (2.13). If the

pressure is eliminated from the x and y momentum equations we find that V satisfies

1 {0_- A2}2V = {_ q- i_-_Ot} {0_- A=} V- g_uu, (5.1)i._R

where we have defined the Reynolds number R by

We see that the terms proportional to sint in (2.13) do not contribute to (5.1) which

is therefore the generalization of the Orr-Sommerfield equation to an unsteady parallel

flowu = t)

The equation (5.1) may be solved using the approach of Hall (1978) who used Floquet

theory to convert the same equation for a Stokes layer mean flow into an infinite sequence

of coupled Orr-Sommerfield equations. Here we shall restrict our attention to solutions

of (5.1) for small and large values of the frequency parameter O.

In the high frequency limit we recall that _ is given by (2.1) for (y + ½) = 0(¢-}). A

similar asymptotic form applies in the upper boundary layer so that any instability will

be localized near y = ±½. In fact _ given by (2.10) is exactly the Stokes layer velocity

profile for the case when the flow is driven by an oscillatory pressure gradient. Hence if

we define r/= _ ½(y + ½) and let

1^ = _+1= ¢_, R _/_

then (5.1) reduces to

1 2 {a 1

with _t = sint - sin t + r/ .

which is to be solved subject to

(5.2)

V=V,=O, r/=0, oc. (5.3)
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the form of Tollmien-Schlichting waves will

whilst roll modes occur when

The partial differential system (5.2)-(5.3) is identical to that governing the instability of

a Stokes layer to Tollmien-Schlichting waves; see Kerczek and Davis (1974), Hall (1978).

Thus the stability of the flow in a rectangular tank flapping at high frequencies is

governed by the equations which determine the stability of a Stokes layer. The Floquet

analysis of (2.14) given by Hall (1978) suggests that a Stokes layer is stable, on the

other hand the quasi-steady approaches of Kerczek and Davis (1974) show that instan-

taneous profiles can be highly unstable because of their inflexional nature. The results

of these different approaches can be reconciled by noting that the quasi-steady solutions

cannot be connected to the Floquet solutions by extending them over a whole period.

Nevertheless the results of the quasi-steady calculations are consisient with experimen-

tal observations and suggest instability will Occur for part of the period whenever/) is

greater than about 200. This suggests that at high frequencies localized instabilities in

occur when

200

2.9

a > --1-_.

It follows that, in an experiment with • fixed, transition will probably be caused by

Tollmien-Schlichting waves for small enough values of a. However a must be less than

about .05 for tile Tollmien-Schlichting wave to become dmninant; this regime was not

investigated experimentally so it is not surprising that the asymtotic prediction given

above is off the scale of Figure (4.1). .

Now let us turn to the low frequency limit • --+ 0, in this limit g is given by (2.11)

and (5.1) may be written in the form

1 (_cost ..iAR{0_-A2}2V= ,. + .+/_0,}{0_-A 2}V-cost_yuV+i. =0, (5.4)

where_=_2{1-4y2}, /_=¢R. (5.5)

The equation (5.4) is to be solved subject to the conditions that 17, W should vanish

at y = +½. The slow time variation of the ba_sic state can be taken care of for the

disturbance by a WKB approach, we therefore expand V in the form

W _ e----b--- ,,

and c(t) is then determined by the instantaneous Orr-Sommerfield eigenvalue problem

1 }2iAR {0_- A2 % = {u(y)cost- c} {0_ - A2} _ - cost_yyl)0 = 0,
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Vo=Voy=O, y-0,1. (5.6)

Thus the effective Reynolds number associated with the velocity field _(y) is (/_cost). In

Figure (5.1) we show the neutral curve )_ -- )_(/_ cost) which marks the boundary between

locally growing and decaying solutions. Thus whenever t and/_ are such that I/_costl is

greater than its value on the neutral curve at a fixed )_ the solution is locally growing.

We further note that Figure (5.1) is the neutral curve for the curve for the Tollmien-

Schlichting wave instability of the flow a channel rotating with a steady angular velocity.

In addition it should be noted that all the eigenvalues we found had zero wavespeed so

that the instability wave corresponds to a standing wave instability. However large we

choose/_ it will be the case that I/_costl is sufficiently small for the part of the cycle so

that the disturbance is locally decaying. The integrated value of the growth rate over

a cycle then determines the stability property of the flow according to Floquet theory.

1
Note that it is sufficient for us to consider only _ a period of the basic flow so that the

neutral solutions based on Floquet theory are given by

where I{} denotes the imaginary part of a complex quantity. In Figure (5.1) we also show

the neutral curve obtained by the imposition of this condition. We see that instability

occurs for /_ > 3965. and unstable modes occur over a finite range of values of the

wavenumber A. The fact that the band of unstable wavenumbers is finite is a direct

consequence of the fact that _ has an inflection point so that at any instant in time

when cost :/: 0 at sufficiently high values of/_ the instantaneous neutral problem has a

modewith c_ = 0. Finally we note that our calculations predict the onset of Tollmien-

Schlichting instabilities when
3965

> ¢---7 (5.8)

The unstable region predicted by (5.8) is off the scale in Figure (4.2) so it would appear

that in BM the wavy and turbulent regimes are not associated with Tolhnien-Schlichting

waves. However it should be remembered that (5.8) is valid only for 4) _ 1, at 0(1)

values of the frequency parameter the stability of the basic state can only be deter-

mined by solving (5.1) numerically. We do not pursue that calculation here since our

asymptotic results suggest that Tollmien-Schlichting waves are not important in the ex-

perimental range investigated by BM. Nevertheless the Floquet solutions of (5.1) are of

some interest since we know that at small values of (I) unstable solutions exist whilst at

large (I) the equation (5.1) governs the instability of a Stokes layer. Since no unstable

17



Floquet solutions have ever been obtained for the latter problem it will be of interest to

determine here the small qb unstable solutions become stabilized at larger (I).

6 Conclusions

Our investigation has shown that the flowing an oscillating fluid tank is susceptible to

at least two types of instability. The first mode is tile roll mode having cell boundaries

parallel to th x - y plane whilst the other instability, the wave mode, is periodic in tile x

direction. Furthermore in the low frequency limit the wave mode is stationary so that the

instability takes the form of rolls which are now parallel to the y - z plane. The onset of

the strong mode observed by BM is explained by the most dangerous linear disturbance

discussed in Section 4 of this paper. We believe that the weak roll observed by BM

is a manifestation of end-effects in their apparatus and is therefore not accessible to a

linear instability analysis. The roll modes we have discussed have a close relationship

with centrifugal and convective instabilities in time periodic boundary layers and it is of

interest to determine the destabilizing mechanism in the present situation. In fact we see

in (3. i) that the terms on the right hand side of the V equation, which are responsible for

the instability, arise from the Corioiis terms in the Navier Stokes equation written down

in the rotating frame. Thus the roll mode is produced by Coriolis effects. On the other

hand the wave mode is associated with an inflection point instability in both the high

and low frequency limits. More precisely the wave instability discussed in §5 at small

values of • is an inviscid instability associated with the inflectional velocity profile _(y).

Our calculations suggest that, low frequencies, this mode does not play a significant

role in the highly nonlinear stages investigated experimentally by BM. However the

wave instability might be more unstable at finite values of the frequency parameter, this

possibility has not been investigated numerically but certainly the results of BM suggest

this as a strong possibility. At high frequencies the wave mode is a locally unstable

Stokes layer instability, BM do not give any results which suggest that this instability

is present in their experiments. We note that this is a highly localized mode and so if it

were present in the experiments it would almost certainly be detected.

In addition to the higher order linear roll modes and travelling wave disturbances

there are other candidates for the secondary and tertiary instabilities observed in the

experiments. We refer to the inviscid modes induced by finite amplitude vortices in

boundary layer flows. These modes, which were discussed by Hall and Horseman (1991),
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arise when a finite amplitude vortex modifies the underlying boundary layer so as to

make it unstable to Rayleighwaves.The secondaryinstability in that problem tends to

be createdat particular spanwiselocationsbut there is no suggestionthat this type of

localization occurs in the flapping tank problem.
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Figures (4.4a,b,c) Tile eigenfunctions of the lnost dangerous modes for a = 1, 1, 1.5 and 5. Note that

U n alld v_t_ 1 are zero wh(__ll D, is evel).
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Figure (5.1) The neutral curves associated with (5.6) with t = 0, (lower curve) and the FIoquet

theory prediction.
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